

The 42<sup>nd</sup> JCCP International Symposium

# Chiyoda Solutions and Technology Development for realizing Carbon Neutrality

## MORIKAMI Satoshi

General Manager, Technology Development Department Chiyoda Corporation / Japan

25 January 2024



## **Company Profile**

#### **Corporate Philosophy**

Enhance our business in aiming for harmony between energy and the environment and contribute to the sustainable development of a society as an integrated engineering company through the use of our collective wisdom and painstakingly developed technology.

#### **Business Vision**

#### - A Grand Opportunity for the Future-

The Chiyoda Group is committed to being an "Innovative" Engineering Company, shaping the future of energy and the global environment with passion and cutting-edge technology.



## **Chiyoda's Philosophy**

Chiyoda has provided pioneering engineering solutions for each generation since 1948, and under the current philosophy 'Energy and Environment in Harmony', continues our vision of 'serving society through technology'.

#### From Coal to Oil, Oil to Gas, Gas to Renewables and New Energy 1948-1970 1971-1990 1991-2000 2001-2010 2011-2020 2030 **Mirai Engineering** Stable supply of Realization of a High value life Optimizing energy clean energy hvdrogen-based utilization science solution Promoting renewable society energy and power storage Energy Low Carbor Business **Nanageme** and Carbon Science (SPER Business Recycling **Busines Battery Power Storage** ormation (DX 2018 DX Business Promotion & Innovation World's largest battery power storage system 1960 2004 project in Hokkaido, Japan Mitsubishi Oil Co., Ltd. LNG plants for Qatargas Operating Mizushima grassroots refinery **Company Limited** droge 1973 2015-2020 Flue-gas desulphurization unit World's first global hydrogen supply chain in Sendai, Japan demonstration project

## **Chiyoda solutions for realizing Carbon Neutral Society**

### Various approaches to contribute on sustainable society

### **Carbon Capture**

- Pre/post-combustion capture facilities
- CO<sub>2</sub> Capture by Solid absorbent
- Direct Air Capture for space station



### **CCU Chemicals**

- CO<sub>2</sub> Reforming (CT-CO<sub>2</sub>AR)
- CO<sub>2</sub> to Mineral
- CO<sub>2</sub> to Para-Xylene
- CO<sub>2</sub> to Ethylene by Electrochemistry Synthesis



## **Energy and Environment**

## in Harmony

### Carbon Free Fuel

- SPERA Hydrogen Supply Chain
- Liquified H2
- Ammonia
- e-Fuel
- e-Methane



### **Digital Transformation**

- EFEXIS™(Engineering × Digital)
- LNG Plant Al Optimizer
- FCC AI Optimizer
- PlantStream



### **Energy Management**

- Energy as a Service (EaaS)
- Virtual Power Plants (VPP)
- Improve productivity of facility/plant
- Battery storage & supply and demand balance for future renewable energy





## Landscape of Hydrogen Carriers

For large scale global  $H_2$  supply chain, methylcyclohexane (MCH) as  $H_2$  carrier and direct use of ammonia (NH<sub>3</sub>) are proven, realistic solution now, while Liquified  $H_2$  and NH<sub>3</sub> with dehydrogenation would co-exist after 2030s.



## Way of Hydrogen Ocean Transportation

- LOHC-MCH : Technology at a Glance



Chiyoda's LOHC-MCH (SPERA Hydrogen<sup>™</sup>) technology uses MCH as the hydrogen carrier in a LOHC <sup>(\*)</sup> system, enabling the safe, efficient and commercially viable storage and transportation of hydrogen on a global scale.



\* MCH : Methylcyclohexane

#### **Key Features**

- **1. Easy to Handle**: SPERA Hydrogen, a stable liquid at ambient temperature and pressure, is as easy to handle as petroleum, and suitable for long term storage and long distance transportation.
- Existing Infrastructure: Possible to repurpose, utilize existing petroleum transportation and storage facility (tanks, tanker, pipeline, tank lorry, etc.), standard and regulation, to minimize investment for H<sub>2</sub> infrastructure.
- **3. Safe with Lower risk:** Safe transportation and storage that is equivalent level to petroleum products, that has already been managed in the society for long term.
- **4. Circular System:** Toluene is recovered after Dehydrogenation and reused as hydrogen carrier for sustainable H<sub>2</sub> supply chain.

## Advancing from Demonstrating to Implementing the Hydrogen Value Chain - Commercializing SPERA Hydrogen™ -







## 1<sup>st</sup> Global Hydrogen Supply Chain Demonstration





## **Global H2 Supply Chain Projects**



Global supply chains are fundamental for SPERA Hydrogen. Studies/discussions are ongoing to identify cost-competitive and feasible H<sub>2</sub> supply/logistics to demand countries (ie: Europe, Singapore, Japan)





### **Further MCH Technology Development**

Chiyoda is further developing technologies and system integration from upstream to downstream to optimize and reduce total H<sub>2</sub> value chain cost



### Development and Demonstration of the New Ammonia Synthesis Catalysts & New Technologies for Ammonia Production

#### Project for the Green Innovation Fund/Fuel Ammonia Supply Chain Establishment Project Reduction of Ammonia Supply Costs

#### Summary

- 1. To develop Japanese independent ammonia synthesis technologies, based on the development of innovative catalysts, to enhance the use of ammonia through lower production costs
- To demonstrate the developed technologies utilizing the catalysts for lower temperature and pressure synthesis process through a competitive development strategy between three (3) industry/academia teams, by bench and pilot tests with test plants scaled down from expected commercial scale plants for earlier social implementation

#### Contractors

Chiyoda Corporation, Tokyo Electric Power Company Holdings, JERA Co., Inc. (Subcontractors: Kyushu University, Kyoto University, Tsubame BHB Co., Ltd., Tokyo Institute of Technology, Nagoya University, National Institute of Technology, Numazu College)

#### **Project Scale**

Total Project Cost: Approx. 24 Billion Japanese Yen Support Budget: Approx. 20.6 Billion Japanese Yen

#### Period

FY2021 ~ FY2030 (ten (10) years)



## **CCUS Technology Research and Development**



## Chiyoda Patent/Own license / CT-CO<sub>2</sub>AR<sup>™</sup>

### - Chemistry via Synthesis Gas

CT-CO<sub>2</sub>AR<sup>™</sup> contributes to reduction of steam(H<sub>2</sub>O) and CO<sub>2</sub> as feedstocks and energy conscious syngas production. CO2 emission reduces 24% compared with conventional way. This technology(proven) should be remarkably suitable in the decarbonation transition.



## **CCUS Technology Development**

Technology and business development of CO<sub>2</sub> capture and utilization is on going, to establish <u>Carbon Recycle Supply Chain</u>.



Blue Planet: Blue Planet Systems Corporation NEDO: New Energy and Industrial Technology Development Organization

# Thank you for your attention

morikami.satoshi@chiyodacorp.com



